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FOREWORD

This report is a technical summary of the progress made by the

Electrical Engineering Department, Auburn University, toward fulfill-

ment of Contract NAS8-26580 granted to Auburn Research Foundation,

Auburn, Alabama. This contract was awarded November 15, 1970, by the

George C. Marshall Space Flight Center, National Aeronautics and

Space Administration, Huntsville, Alabama.
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SUMMARY

Some problems associated with the design of model-reference adaptive

control systems are considered and solutions to these problems are

advanced. The stability of the adapted system is a primary consider-

ation in the development of both the time-domain and the frequency-

domain design techniques. Consequentially, the use of Liapunov's

direct method forms an integral part of the derivation of the design

procedures. The application of sensitivity coefficients to the design

of model-reference adaptive control systems is considered. An appli-

cation of the design techniques developed herein is also presented.
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I. INTRODUCTION

The control requirements necessary for many of today's complex phys-

ical processes has fostered the search for control methods which provide

better performance characteristics than could be obtained with conven-

tional control methods. For example, the use of computers in the control

loop of complex industrial processes is commonplace. In addition, con-

siderable research effort is being expended in order to provide systems

with the capabilities to "adapt" themselves to a changing environment so

as to maintain satisfactory performance characteristics throughout the

entire environmental profile. The need for satisfactory performance of

a control system in a changing environment or with inadequately defined

parameters is not new. Indeed, one of the reasons for the use of feed-

back control systems is the inherent capability of the system to be

somewhat insensitive to changes in the controlled process. However, for

some physical processes, conventional methods are inadequate and other

methods of control are necessary.

The interest in adaptive control has been generated largely because

of a number of problems which could not be solved using conventional de-

sign techniques. Such a situation might develop when the plant param-

eters change grossly during the operation of the system. To further com-

plicate the problem, the environment in which the plant is operating may

also be changing drastically. These variations will not, in general, be

1
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deterministic. Some may be predicted by statistical methods while others

may be totally unpredictable. Specifically, high-performance aircraft

and missiles have widely-varying parameters and in many cases operate in

extremely different environmental characteristics during the operation

profile of the mission. Some extensive bibliographies of research in

the adaptive control area have been compiled [1], [2], [3]. In addition

to a general adaptive control bibliography, reference [3] also contains

compilations of research effort in particular areas of adaptive control

such as adaptive process controllers and identification.

There appears to be no universally accepted definition for an adapt-

ive control system. Henceforth, an adaptive control system will be de-

fined as:

Definition I-1. An adaptive control system is a system which

monitors some of the plant characteristics, compares this with the

desired characteristics and uses the difference to provide adaptation

so that the desired performance may be obtained.

There are, essentially, two basic approaches to the adaptive control

problem. One approach which may be referred to as an "open-loop" policy

is the preprogrammed adaption scheme. In this approach the plant de-

scription, the environmental conditions, and a performance criterion are

assumed to be known. The adaptive parameters are then determined so as

to be optimum with respect to the given performance index. Environmental

measurements are then made and parameters adjusted based on these mea-

surements. For proper operation, this scheme requires accurate knowledge
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of the plant and extensive information regarding the relationships of the

measured environmental quantities to the system characteristics. These

relationships as well as accurate identification of the plant may well

be very difficult to ascertain.

The second approach, which is of primary interest, may be referred

to as "closed-loop". Here, the performance criterion is continuously

monitored and this information is used to adapt the system so that the

desired performance characteristics are obtained. This "closed-loop"

property provides increased system reliability since the adaptive scheme

has the capability of achieving satisfactory performance despite failure

of some of the system components. The "closed-loop" concept of adaptive

control systems is of major concern and will be considered in the fol-

lowing.

A. Classification of Adaptive Control Schemes

Adaptive control systems may take many different forms. Three

classifications of adaptive control systems which encompass most of the

different schemes are

(1) High-gain schemes,

(2) Optimal adaptive methods, and

(3) Model-reference adaptive control systems.

In general, the high-gain schemes are the simplest types of adaptive

control systems while the optimal adaptive methods are the most complex

of the three classifications.
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1. High-Gain Adaptive Control Systems

The basic premise behind the high-gain schemes is that if the loop

gain around a plant is kept sufficiently high, the input-output transfer

function is virtually independent of the plant dynamics.

This scheme is exemplified in Figure I-1. From Figure I-1, the

transfer function from S to C is

C(s) KGp (s)
_ = (1-l)

S(s) 1 + KGp(s)

Assuming that

IKG(S) I >> 1, (-2)

the transfer function from S to C is

C(s) 1 (i-3)

S(s)

Under this assumption, the transfer function from the actual input R to

the plant output C is

C(S) - G(s) (I-4)
R(s)

Thus, the transfer function from input to output is approximately equal

to the arbitrarily specified model transfer function and is essentially

independent of the plant dynamics. In practical systems, however,



S(s)

Figure I-1. Block diagram of basic high-gain adaptive control scheme.
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stability problems arise with increasing values of gain. Because of

this, it is necessary to monitor the signal in the plant loop and insure

that the system remains stable. With this information, the gain, K,

may be adjusted so the system is on the verge of instability. With the

gain as high as practically possible because of stability reasons, the

transfer function approximation of equation (I-4) is as accurate as pos-

sible. The block diagram of a practical high-gain adaptive control sys-

tem is shown in Figure I-2. Here, the loop stability monitoring charac-

teristics and the gain adjusting capabilities are included.

The high-gain concept of adaptive control does have serious draw-

backs, however. One of the major disadvantages of the high-gain approach

is that a considerable amount of apriori information about the system

must be known. For example, from a practical standpoint, in order to

utilize the capabilities of the approach, the approximate value of gain

where the roots of the system characteristic equation go into the right-

half plane must be known.

One of the first applications of the high-gain approach for adapt-

ive control systems was the adaptive system for the horizontal stabiliz-

ers on the X-15 aircraft [4]. The system block diagram, not including

the reference model, for the roll axis is shown in Figure I-3. As can be

seen from the figure, the gain in the system is a function of a fixed

gain, K1, and a variable stability augmentation system (SAS) or adaptive

gain, K.

The adaptive gain, K, was varied so as to provide optimum system

performance throughout the various regions of dynamic pressure in which

the X-15 would be operating. Adaptive operation was maintained at an



Stability

Monitor

Figure I-2. Block diagram of practical high-gain adaptive control scheme.



Figure I-3. Roll axis block diagram for X-15 aircraft.
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oscillation frequency of 4 hz. The various shaping networks were

designed to compensate for effects such as structural bending modes and

a resonant mode due to the mass unbalance of the stabilizers. This high-

gain adaptive control system was successfully flight-tested with the X-15

aircraft. With the adaptive system, the response to a pulse or step in-

put in the roll and yaw axis was essentially critically damped whereas

the pitch axis response to a pulse or step input had a slight overshoot.

2. Optimal Adaptive Control Systems

The optimal adaptive control method is, in general, the most complex

of the adaptive control schemes. In the optimal adaptive approach, the

adaptive action is determined in order to achieve a maximum or a minimum

of some prespecified performance index whereas in other approaches such

as the high-gain scheme, the adaptive action consists of attempting to

match some prespecified system characteristics such as the system pole-

zero locations. Thus, the optimal adaptive control method basically con-

sists of solving some optimization problem. However, in order to solve

the optimization problem, it is necessary to assume that the system param-

eters and system states are known. In general, for an adaptive control

problem, these quantities are not completely known and plant identifica-

tion and state estimation become an integral part of the problem. How-

ever, this adds measurably to the complexity of the adaptive control

problem. A general block diagram for an optimal adaptive control system

is shown in Figure I-4.

For plant identification, correlation techniques may be used in

order to obtain an approximation to the system inpulse response. The
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input-output cross-correlation' function, Rxy(T), for a system with an

impulse response, h(t), which is excited by a noise signal with autocor-

relation, Rxx(T), is given by the expression:

00

RXy(T) = Rx(T + t) h(t) dt (1-5)

If the input is white noise or if the bandwidth of the input is consid-

erably larger than the system bandwidth, the autocorrelation function may

be represented as an impulse and the input-output cross-correlation is

given by

Rxy(T) = g(-T). (I-6)

Under the assumption of ergodicity, the cross-correlation function may be

approximated by a time average. One point of the impulse function may

then be obtained for each value of delay, T, at which the input-output

cross-correlation is performed. By operating a number of the input-out-

put cross-correlators in parallel with delays of T, 2 T, 3T, etc., a

reasonable approximation to the system impulse response may be obtained.

One technique for the solution of the state-estimation problem is

with the methods discussed in Meditch[5]. Consider the system repre-

sented by the relations

x(t) = F(t) x(t) + G(t) w(t) (I-7)

z(t) = H(t) x(t) + v(t), (I-8)
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where x(t) is the system state, an n-vector, z(t) is the measurement

vector, an m-vector, and w(t) and v(t) are zero mean gaussian white noise

vectors of dimension p and m, with covariance matrices Q(t) and R(t),

respectively. F(t), G(t), and H(t) are matrices of dimension nxn, nxp,

and mxn, respectively. A block diagram of this system is shown in Figure

I-5. The problem of estimation may then be stated as follows:

Given the measurement z(t), we wish to find an estimate of x(t),

which will be denoted as x(t). This estimate will be defined as an n-

dimensional function, 4, of the measurements. In equation form, this

may be stated as:

x^ [*(t)] (I-9)

The filtered estimate for the system of Equation (II-7) and (II-8), first

solved by Kalman, is given by

x = F(t) i + K(t)[z(t) - H(t) xl, (I-10)

where K(t) is an nxm filter gain matrix given by

K(t) = PHT(t) R-l (t), (I-ll)

where ( )T and ( )-1 denote transpose and inverse, respectively, and P

is the covariance matrix of the filter estimation error and is the solu-

tion of the matrix Riccati equation



z(t)
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Figure I-5. Block diagram of system for state estimation.
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P = F(t) P + PFT(t) - PH (t) R-l(t) H(t) P + G(t) Q(t) GT(t) (I-12)

The preceding methods for plant identification and for state estima-

tion require a large amount of calculations and for large order systems,

the computational requirements may be excessive. The delays introduced

by the required computations may, in many instances, cause stability

problems. In addition, the plant identification scheme requires an aux-

iliary input to the system which consists of noise with a bandwidth much

greater than the bandwidth of the system. This auxiliary input may, in

many applications, be impractical.

One example of an optimal adaptive scheme is that of Margolis [6].

In this scheme, identification is accomplished by having a "learning"

model which is an analog of the system to be adapted. The model contains

adjustable parameters which are used to force the model to dynamically

track the system. The same input signals are received by both the model

and the plant and the difference in the plant and model outputs is used

to determine the necessary parameter adjustments. The adjusted param-

eters of the model are then used to compute the plant alterations nec-

essary in order to provide minimization of the specified Performance

Index.

3. Model-Reference Adaptive Control Systems

The concept of model-reference adaptive control evolved at the Massa-

chusetts Institute of Technology Instrumentation Laboratory [7]. It

evolved from a research program to develop automatic flight control
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systems capable of providing adequate control throughout a very wide

operating range. The adaptive action is "closed-loop" and adaptation is

performed based on normal operating inputs to the system. Hence, special

test signals for disturbing the system are not required. A basic block

diagram of a model-reference system is shown in Figure I-6.

In the model-reference concept, system performance is evaluated by

comparing it with the performance of a reference model. The reference

model is designed so that its output, when excited by the same input com-

mands as to the system to be adapted, gives the desired response of the

system. The response error is formed by taking the difference between

the output of the reference model and the output of the plant. The adapt-

ive mechanism then determines the adaption necessary so that the system

response closely approximates that of the model.

Two of the approaches proposed in order to achieve the required

adaptation for model-reference adaptive control systems are those of

Osburn [8] and Dressler [9]. In the work by Osburn, the basic configura-

tion is as shown in Figure I-6. The plant is assumed to have k adaptive

parameters. The performance criterion, L, is an even function of the k

adaptive parameters. L is then used in order to determine how the adapt-

ive parameters should be adjusted in order to achieve the desired system

performance. The adjustments of the adaptive parameters are determined

in the following manner. The performance criterion, L, which is a func-

tion of the k adaptive parameters is viewed as a hyperplane in the k-

dimensional adaptive parameter space. The objective then is to find the

required adaptive parameter values so that the performance criterion is



Model

I
I
I
I
I
I

xm

e

x
P

Figure I-6. Block diagram of basic model-reference adaptive control scheme.

U(t) 
Adaptive

Mechanism

Adaptive

Controller

0

Plant



17

minimized. The partial derivatives of the performance criterion with

respect to the various adaptive parameters are obtained. Each parameter

is then adjusted at a rate proportional to the partial derivative of L

with respect to that parameter. The adaption then proceeds to an extre-

mum along the path of steepest descent. The particular performance cri-

terion selected by Osburn is

L= e2 dt. (I-13)

The interval [tl, t
2
] must be of sufficient length so as to include a

large portion of the system response due to an input at time tl. The

parameter adjustment of Pk' the kth adaptive parameter, is given by:

t 2

APk = K K - I' e2 dt (I-14)

k tl

where K is an adaptive gain constant which determines the magnitude of

the adjustment.

The selection of a performance criterion for use with the method of

steepest ascent or descent is very critical. For example, if the hyper-

plane represented by the performance criterion has several points at

which the gradient is zero, but at some of these points, the performance

criterion does not assume its absolute minimum or maximum value, then

the adaptive parameters may not be adjusted to the values necessary to

attain the desired system characteristics. Also, the complexity
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associated with the generation of the necessary partial derivatives is a

distinct disadvantage of this method.

Dressier approaches the model-reference adaptive control problem

from the state-space point of view. The model system is assumed to be

of the form

xm - Am Bm + Bm _ (I-15)

where m is an nth order model state vector, u is an r-dimensional in-

put vector, and A
m

and Bm are matrices of order nxn and nxr, respect-

ively. The plant is assumed to be represented by:

p - AP xp + Bp U (1-16)

where xp is an nth order plant state vector, u is the same input as in

the model, and AP and Bp are nxn and nxr matrices, respectively. In

order to obtain analytically the explicit functional relationship be-

tween the response error and the adaptive parameters it is assumed that

the matrices Ap and Bp may be decomposed as follows:

Ap = Am + 6A6 (I-17)

Bp = Bm + 6B6

The matrices 6A
6

and 6B
6
contain the adaptive parameters and are consid-

ered as perturbations of the plant matrices from the model matrices.
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With these assumptions, an explicit relationship for the response

error may be derived using the method of successive approximations for

the solution of the necessary differential equations. In order to obtain

a measure of the change in the response error due to a change in the

adaptive parameters, the incremental response error is defined as

Ae(t) - e(t + At) - e(t) (I-19)

where At is chosen sufficiently small so that any incremental response

error occurring in At time is due only to the change caused by the adjust-

ment of the adaptive parameters.

The basic premise in Dressler's solution to the adaptive control

problem may be stated thusly: If at some time t1, the response error is

not zero, the adaptive parameters will be adjusted so as to cause the

magnitude of the response error to be decreased for t > tl. In equation

form, the design criterion may be stated as:

If then

e(tl) < 0 Ae(tl + At) > 0

e(tl) > 0 Ae(t1 + At) < 0 and

e(tl) = 0 Ae(tl + At) = 0. (I-20)

Dressler shows that this design criterion may be satisfied if the adapt-

ive parameter rates are chosen by the relationships:
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a(t) = k1 xm(t) e(t) (I-21)

b(t) = k2 u(t) e(t) (I-22)

where a and b are elements of Ap and Bp, respectively and k l and k2 are

adaptive gain constants.

It is obvious from comparing equations (II-14), (II-21), and (II-22)

that the adaptation relationships obtained by Dressler would be much

simpler to implement than those obtained by Osburn. However, in both of

these techniques, the stability of the adaptive system is not considered

in the design relationships.

B. Purpose of Present Research

It is the purpose of the present research to obtain adaption rela-

tionships for model-reference adaptive control systems which, by utiliza-

tion of the stability theorems of Liapunov, incorporate stability consid-

erations of the adaptive system into the basic design equations. Adap-

tion relationships are derived from both time domain and frequency domain

considerations. An investigation is also made into the use of sensiti-

ity coefficients in connection with the design of model-reference adapt-

ive control systems.

Specifically, Chapter II contains a detailed discussion of the de-

termination of stability via Liapunov's direct method. In Chapter III,

the adaption relationships are derived for the design of model-refer-

ence control systems using Liapunov's direct method. The design proce-

dure is developed for a time-domain representation of the system. In
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Chapter IV, the second method of Liapunov is used to design feedback fil-

ters and pre-filters to provide the necessary adaption. This procedure

is based on frequency-domain considerations. In Chapter V, the use of

sensitivity coefficients in the design of model-reference adaptive con-

trol systems is studied. Chapter VI contains a comparison of the various

adaption schemes developed and conclusions regarding their use.



II. LIAPUNOV'S DIRECT METHOD

Since the use of Liapunov's direct method is vital to the design

techniques developed in the present research, it is felt that a chapter

elucidating the second method is necessary for completeness. The

material contained in this chapter essentially comes from the author's

class notes and [10], [11], and [12].

A. Historical Background

The direct method of Liapunov was introduced by the Russian math-

ematician A. M. Liapunov in a dissertation in 1892. The method is a

general procedure for determining the stability of ordinary differential

equations. It is of very broad scope in that it is applicable to auton-

omous or nonautonomous and to linear or nonlinear ordinary differential

equations. In the literature, the direct method is sometimes referred

to as Liapunov's second method. Liapunov classified the stability

analysis techniques for ordinary differential equations as belonging to

one of two methods. The indirect, or first method, requires the

solution to the differential equations under investigation. The direct,

or second method, which is of primary interest, does not require the

solution of the differential equations under investigation, but deals

with stability criteria which can be applied directly to these equations.

22
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B. Liapunov Stability

Before discussing the determination of stability via Liapunov's

direct method, it is necessary to properly and precisely define the

concept of stability. In a linear, autonomous system, there will exist

only one equilibrium state. If all system trajectories approach this

equilibrium state as time approaches infinity the system is said to be

stable. If all system trajectories not initially at the equilibrium

state approach infinity as time approaches infinity, then the system is

said to be unstable. An exception to these definitions is the case

where the system has roots which are purely imaginary. For this case,

if the system is not initially at the equilibrium state, the system will

oscillate for all time. The stability of a linear system is indepen-

dent of the magnitude of the initial conditions and, in addition, the

output of the system is bounded for any bounded input. Unfortunately,

for nonlinear systems, there are various degrees or levels of stability.

There are at least 3 basic differences in the concept of stability for

a nonlinear system. These are: (1) A nonlinear system may have several

equilibrium states. Therefore, in general, it is necessary to speak of

the stability relative to an equilibrium state rather than stability of

the system as was done in the linear case; (2) In the nonlinear system

stability of an equilibrium state does not imply stability of the over-

all state space. The notions of local stability and global stability

must be considered separately; (3) Even in the case of local stability,

the concepts of boundedness of the system state trajectories and the
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asymptoticity of the system state trajectories are involved. Boundedness

of a system state trajectory refers to the property that a system state

which is initially in some suitably restricted region, will never leave

another well-defined region. The concept of asymptoticity refers to the

property that all system state trajectories will approach the equilibrium

state under investigation as time approaches infinity.

The basic idea of stability as formulated by Liapunov is of the

same notion as the boundedness property discussed above. In the fol-

lowing, I| II denotes the Euclidean norm. The definition for

Liapunov stability is as follows:

Definition II-1. An equilibrium state, xe, of an autonomous dynamic

system is stable in the sense of Liapunov if for c > O, there exists

a 6 > 0 such that if flxO - xell < 6, then Ilx(t) - xell < e for all

t > to.

The concept of Liapunov stability is illustrated in Figure II-1. The

definition for not being Liapunov stable may be stated thusly:

Definition II-2. An equilibrium state, xe, is not stable in the sense

of Liapunov if there exists an e > 0 such that if for all 6 > O, there

exists an initial state x
e
when Ilxo - xelI < 6 such that jIx(t) - xelI

> C for some t > t
O
.

Asymptotic stability may be defined as follows:



X2

Figure II-1. Illustration of Liapunov stability.

X1

Vn
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Definition II-3. An equilibrium state, xe, is asymptotically stable if

(1) the equilibrium state is stable, and (2) there exists a 6a > 0 such

that if IlxO - xell < 6 a, then the system state trajectory approaches Xe

as time approaches infinity.

An illustration of asymptotic stability is shown in Figure II-2.

Definition II-4. A system is not asymptotically stable if (1) the

equilibrium state is not stable, or (2) if 6 > O, there exists an

initial state x0 where IlxO - xell < 6a such that the system state

trajectory does not approach xe as time approaches infinity.

These concepts of stability are local in nature, i.e., they apply

to the stability of a system in a region about the equilibrium state.

In addition, the notion of not being Liapunov stable does not imply that

the state trajectory will stray arbitrarily far from the equilibrium

state.

C. Sign Definiteness of Scalar Functions

For convenience in the discussion of the Liapunov stability theorems

in the following section, the concept of sign definiteness of a scalar

function will be briefly discussed. Also, a particular class of scalar

functions, the quadratic form, will be introduced.

The idea of sign definiteness of a scalar function of an n-dimen-

sional variable x is an extension of the idea of a scalar function of a

single variable. For example, a scalar function f(x) is positive on the
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Figure II-2. Illustration of asymptotic stability.
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interval a < x < b if f(x) > 0 for all x in this interval. Likewise, a

function is negative on the interval a < x < b if f(x) < 0 for all x

in this interval. For the case of a scalar function of an n-dimensional

variable x, the sign definiteness is dependent on an n-dimensional

region.

Definition II-5. A scalar function V(x), is positive definite in the

region IlxIi < C if (1) for all nonzero x in IlxIi < C, V(x) > 0, and

(2) V(O) = 0.

Definition II-6. A scalar function, V(x), is negative definite in the

region IIxII < C if (1) for all nonzero x in Ilxli < C, V(x) < 0, and

(2) V(O) = 0.

Definition II-7. A scalar function, V(x), is positive-semidefinite in

the region |Ixii < C if (1) for all x in Ilxii < C, V(x) > 0, and (2)

V(O) = 0.

Definition II-8. A scalar function, V(x), is negative-semidefinite in

the region Ilxii < C if (1) for all x in Ilxii < C, V(x) < 0, and (2)

V(O) = 0.

Definition II-9. A scalar function, V(x), is indefinite if for C > 0,

there exists a value of x in Ilxii < C such that V(x) is positive and a

value of x is IlxII < C such that V(x) is negative.

The next question might be that given a scalar function V(x), how

does one use the previous definitions to ascertain the sign definiteness

of the scalar function. In general, there is no straight forward
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approach for determining the sign definiteness of a given scalar func-

tion. This fact severely restricts the potential usefulness of the

stability theorems of Liapunov. However, there is one particular form

of scalar function for which there exists a technique for determining

its sign definiteness. Such a scalar function is the quadratic function,

which may be written as:

n n
V(x) = X I kijxix j where

i=l j=l

kij, i, j = 1,..., n are constants.

only of second degree in x
i

and xj.

be written as:

This scalar function involves terms

The scalar function, V(x) may also

V(x) = xTQx, where

Q is a constant symmetric nxn matrix. A method of determining the sign

definiteness of this function is by the use of Sylvester's theorem.

Theorem II-1 - Sylvester's Theorem. A quadratic scalar function, V(x),

is positive definite if and only if each of the quantities

qll
det q

1 2q12

q12 d q 1

q22' det q12

q13

q1 2

q2 2

q2 3

q1 3

q2 3 ,..., det [Q]

q33

det [qll ],
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are greater than zero.

If any of the above determinants fails to be positive by being

equal to zero, then the scalar function is positive semidefinite. A

matrix Q is negative definite or negative semidefinite if the matrix

-Q is positive definite or positive semidefinite, respectively.

D. Liapunov Stability Theorems.

The basis of Liapunov's direct method may be considered as a

generalization of the energy concepts for mechanical systems. For

example, a mechanical system is stable and tending towards an equilib-

rium state if the total energy of the system is decreasing. This basic

idea, extended to n-dimensions, may be used to determine if an equilib-

rium state of a system is asymptotically stable, stable in the sense

of Liapunov or unstable. Proofs of these theorems are given in [10].

Theorem II-2 - Liapunov's First Stability Theorem. An equilibrium

state, xe, of a system is stable in the sense of Liapunov if (1) there

exists a scalar function, V(x), which is continuous and has continuous

first partial derivatives in some region R about the equilibrium

state, (2) V(x) is positive definite in the region R and, (3) the time

derivative of the scalar function, V(x), evaluated along the trajec-

tories of the system under investigation, is negative semidefinite in

the region R.
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Theorem II-3 - Liapunov's Second Stability Theorem. An equilibrium

state, xe, of a system is asymptotically stable if (1) there exists a

scalar function, V(x), which is continuous and has continuous first

partial derivatives in some region R about the equilibrium state, (2)

V(x) is positive definite in the region R, and (3) the time derivative

of the scalar function, V(x), evaluated along the trajectories of the

system under investigation, is negative definite in the region R.

Theorem II-4. An equilibrium state, x , of a system is asymptotically
e

stable if (1) the equilibrium state is Liapunov stable and (2) the

curve V = 0 is not a system trajectory.

The preceding theorems provide only sufficient conditions for deter-

mining the stability of an equilibrium state. Thus, for a given system,

if a scalar function that satisfies the conditions of the stability

theorems cannot be found, it does not mean that the equilibrium state

is unstable. We have only failed to establish the stability of the

equilibrium state. The following theorems may be used to establish the

instability of an equilibrium state.

Theorem II-5 - Liapunov's First Instability Theorem. An equilibrium

state, Xe, of a system is unstable if (1) there exists a scalar function,

V(x), which is continuous and has continuous first partial derivatives

in some region R about the equilibrium state, (2) the time derivative

of the scalar function, V(x), evaluated along the trajectories of the

system under investigation, is positive definite, and (3) the scalar
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function V(x) is indefinite, positive semidefinite, or positive definite

in a region, R, arbitrarily near the equilibrium state.

Theorem II-6 - Liapunov's Second Instability Theorem. An equilibrium

state of a system, xe, is unstable if (1) there exists a scalar func-

tion, V(x), which is continuous and has continuous first partial deriv-

atives in some region R about the equilibrium state, (2) the time

derivative of the scalar function, V(x), evaluated along the trajec-

tories of the system under investigation, is of the form

V(x) = XV(x) + Vl(x) where

A > 0 and Vl(x) is positive semidefinite in the region R, and (3) the

scalar function V(x) is indefinite, positive semidefinite, or positive

definite in the region, R, arbitrarily near the equilibrium state.

In order to illustrate the use of Liapunov's stability theorems,

let us consider the stability of the equilibrium states of Van der Pol's

equation.

dX 2 dx
dt2+ (x -1) dx + x = (II-1)

where p is an arbitrary constant. In state equation form, this may be

written as:
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X = x2

(1 2

X2 = -xl -(x1 -1)X (11-2)

The only equilibrium state of the system is obviously, x1 = x2 = 0.

Investigation of equation (II-2) shows that for p > 0 a stable limit

cycle is indicated. This is, indeed, the case. The limit-cycle bound-

aries are shown in Figure II-3 for a value of U = 1. For p < 0, an

unstable limit cycle is indicated and this is exemplified in Figure II-4

by two system trajectories, one inside the limit-cycle boundaries and

one outside. Thus, for p > 0, the equilibrium state is unstable in the

sense of Liapunov and for p < 0, the equilibrium state is asymptotically

stable.

In order to show this using Liapunov's stability theorems, consider

first the case p = 1. The state equations may be written as:

X1 = 2

X2 = -xl - (x1
2
-1)x2 (11-3)

As a scalar function, V(x), select

V(x) = x1 2 (3/2-1/4xl2 ) + x 22 - xlx2 (II-4)
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Figure II-4. Illustration of unstable limit
cycle for Van der Pol's equation.
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This function is positive definite for x 2 < 5. The time derivative of

equation II-4 evaluated along the system trajectories is:

V(x) = x12 + x2 2 (1-2xl 2
)

Equation II-5 is positive definite for x12 less than 1/2. There

from Theorem II-5, the equilibrium state is unstable.

For the case u = -1, the state equations may be written as:

xl = x

1 2= -x
= -X1 + (x

(11-5)

fore,

(II-6)

Again, the single equilibrium state of the system is xl = x
2

= 0. For

this case, select V(x) to be:

V(x) = 1/2 x12 + x22 + 1/4x141 2 +l4 1
(II-7)

V(x), evaluated along the system trajectories is given by:

V(x) = -x12 - 3x22 + 2x12x22 (11-8)

2
Thus, the conditions of Theorem II-3 are satisfied for xl less than 3/2

and the equilibrium state is asymptotically stable.
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E. Application of Liapunov's Direct Method to Model-Reference Adaptive

Control Systems.

The basic idea in the application of Liapunov's direct method for

the design of model-reference adaptive control systems is to design

the system adaption in such a manner that the response error (model

output minus plant output) will be asymptotically stable. If by using

Liapunov's direct method it can be shown that the response error is

asymptotically stable, then it follows that the plant will track the

model.

The response error, in equation form, is given by:

e(t) = xm(t) - x p(t) (I-9)

If the adaption is designed so that the response error is asymptotically

stable and the model is assumed asymptotically stable, then

limit e(t) = limit xm(t) - limit xp(t) (II-10)
t -+ t X X t + p 

Since limit e(t) = limit xm(t) = 0, then

limit p(t) = 0 (II-1)

t > X

and the plant will adapt so as to track the model.



III. TIME-DOMAIN MODEL REFERENCE ADAPTIVE CONTROL SYSTEM DESIGN

This chapter presents the results of the present research in the

area of time-domain design of model-reference adaptive control systems

using Liapunov's direct method. The time-varying model-reference adaptive

problem is formulated precisely and the adaption technique is derived

analytically. The inclusion of several positive semidefinite terms into

a Liapunov function results in an adaptation rule which is a function of

the response error, the input, the plant states, and the derivative and

integral of these quantities. The design technique, as well as being

applicable to a class of time-varying systems is also shown to be

applicable, with certain assumptions, to a class of non-linear adaptive

systems. Simulation results of a model of the National Aeronautics and

Space Administration's Space Shuttle vehicle show that the adaptation

technique provides good convergence for the adaptive parameters and that

the response error is greatly reduced as compared to the non-adapted

system.

A. Problem Formulation

The time-varying adaptive control problem considered is assumed to

be described by the state equations:

xp(t) = Ap(t)x p(t) + Bp(t)u(t) (III-1)
-p ~p W-pp

38
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where Xp(t) is an n-vector, u(t) is an r-vector, and Ap(t) and Bp(t) are

n x n and n x r matrices, respectively. The elements of Ap(t) and Bp(t)

consist, in general, of unknown, time-varying adjustable parameters. Each

element of the Ap and Bp matrices is assumed to be of the form:

aij(t) = cij (t) + Kij(t)

(III-2)

P b b
bij(t) = cij(t) + Kij(t)

where Ki(t) and Kij(t) are the adaption parameters, and in general,

cia (t) and cb j(t) are time varying unknown values. One basic assump-

tion, which is necessary for mathematical rigor, will now be made

concerning the elements of the Ap and Bp matrices. The assumption is

that the time rate of change of the unknown portion of the plant para-

.a .b
meters, i.e., cij(t) and cij(t), may be considered negligible as com-

.a
pared to the time rate of change of the adaption parameters, Kij(t) and
.b
Kij(t).

The model control system is assumed to be of the form:

x (t) = Amxm(t) + Bmu(t) (III-3)

where x(t) is an n-vector, u is an r-vector, and Am and Bm are n x n

and n x r constant matrices, respectively.
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This is basically the same system as in [13] and [14] except a time-

varying plant is considered here. The response error in the model-

reference scheme is given by:

e(t) - x (t) - x (t) (III-4)
--m -p

The error state equation may then be derived from Equations (III-1),

(III-3), and (III-4) as:

e(t) = Ame(t) + A(t)xp(t) + B(t)u(t) (111-5)

where A(t) = Am - Ap(t) and B(t) = Bm - Bp(t).

The reference model output, xm(t), corresponds to the desired out-

put of the adaptive control system when subjected to the input u(t). The

a b
design objective then is to adjust the parameters Kij(t) and Kij(t) so

that xp(t) closely approximates Xm(t) regardless of plant parameter vari-

ations.

B. Derivation of Adaption Rule

The first step in the derivation of the adaption rule is to select

a Liapunov function which is a quadratic form of the error plus several

positive semidefinite terms. The positive semidefinite terms will be a

function of the error states, the plant states, the inputs, and the

adaption parameters. For convenience in notation, the dependence on time



41

of the various quantities will be denoted explicitly.

The Liapunov function selected is:

T n n
V = e Qe + I {a + ijkl el qk j.+

n r n
+ lj- Yj=l {bij + ij ekqkkiu

il=1 ij kil

n n r n

+ij dt X ekqkiuj]} + iljl i e k ukj] (III-6)
d = i=lj--1 

°

i j k=l

Q is a symmetric positive-definite matrix which will be determined later,

aij and bij are elements of the A and B matrices, respectively, aij and

Yij are constants > 0, and Bij, Pij' 6ij' and oij are constants > 0.

This Liapunov function differs considerably from that of [14] as the

basic form has been modified by the addition of the terms and cross-

product terms associated with the coefficients Pij and aij. With the

inclusion of these terms, the adaption parameters become a function of

the integral and the derivative of the error as well as the error itself.

The time derivative of Equation (III-6), term by term, is

T T TV = e [AmQ + QAm]e + 2e QAxp + 2eQBu

n a .a

i 1 ij
+ 2 I i ij

i,j=l aij
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n a

+ 2 Iaij

+2 i ii

i,j=1 aij

n p..

+2 a
+ 2 i,j1 l a 

+2 j aij 
i,j=1 ctij aj

n
+ 2 

1
i,j=l

n

+ i,jl

Bij P..

aij

ii Pii
aij ij

n

I ekqkixpj
k=l

d [ lekqkixpj]

d e xi
dt ki

d2 n

{d [k_-i k kipj]

n

kZlekqkixpj

2
}

d2 [k-n k k 
dt2 LkI kki PjI

2

+2 1 - l x dt nelCkkip ij
1,j l~ij kkl k k

n
+2 .

1,j=1

n

+2 X
1,j=l

n r
+2 I I

i=lj=1

n r
+2 I I

i=lj=1

2
1i d

aij dt
E [ k ] j

1

d ekqkjxpj]

n n

Pij l ekqki pj dt ekq kixp]

b
ij 1ij

Yij

6 .b..
11 11

Yij

n

ekqkiuj
k=l

n r ij bij

i=ljl1 Yij

(

L

d n k
-[k=
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n r 6 b n

+2 1 1 [ , equl
i=lj=1 Yij dt 

n r b.. 2rn 1

i=lj=l Yij dt2 kl k_ jJ

dt k

n r 6.. a. n d2 n
+ 2 i Y 1 ekqkiui dt2 I · ekqkiu;

ilj-1 Yij d 2k [l

i-ljl i+2[ i I ekq ki uj (W

[ 3
i=lj=l Yij (~ k

+anr 6i as ngi deik 

i=lj=1 Yij d 1 e
k

q

k i

u
j d e

k
q

k i

u

2

+2 n r6.. n d 

+ 2 + y a.j I e qkiuj dt k Iln

i=lj=l ijk=l [k

n r an

ixlj=1 vi. dt kiu dt2[ ! lekqkiu

+2 Oij ekQkiU d qul (111-7)

In order to prove that the response error is asymptotically stable, it is

necessary to choose aij and bij so that the time derivative of the

Liapunov function is negative definite. Now,

T
e QAx 

p

(e111+ e2q21+ ... + ennl)' (allxpl + a12Xp2 + ... + alnxpn) +

(elq
12

+ e
2
q
22

+ ... + enq2n)'(a2 1 Xpl + a22xpn + . .. + a2nxpn) + ...
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+ (elq ln + e2q2n + .. + enqnn)'(anlxpl + an2xp2+ + annxpn)

+ . .. + enqnl)'(bllul + b12 2 + .. + blrur) +

+ ... + enqn2)'(b21Ul + b
22
U

2
+ *-- + b

2
rur) + ...

+ (elqln + e2q2n + ... + enqnn) (bnlUl + bn2 u2 + "- + bnrur )

n r n

i=l j=1
k~l bijekqkiuj
k--1

Let the parameters aij and bij, which are directly related to the adapt-

tion parameters, be of the form:

aij =-aijij -ij

n

kIlekqkixpj -6ij
k=l

- d2 [n 

Pij k IlekqkiXpjdt Ik=lI

n n

i=l j=l

n

kl aij ekqkix pjk=l 

and

T
e QBu =

(elqll + e2q21

(elq
12

+ e2q22

(III-8)

dt [ lekqkiXpj]1k=l
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n

bi -Yij klekqkiuj -6ij dtij il 13 dt [ klekqkiXpjl]
I k ·,,,,

-aij d2 [ F ekqkiuj
dt2 k=l I

Substituting the above values for aij and ;ij into Equation (III-7), and

collecting terms-, V becomes:

V = eT (AmQ + QAm)e

-2 Si 6ij
i=l j=l

n
-2 Bij
i,j=l

n xp2 

k=l

[ ekqkiu]

This cancellation of terms in the expression of V by the substitution of

na A
a.. and b.. is accomplished as exemplified below. The term 2 1 i ji 

j

13 13 1J~~~~~~~~~ij=l aij

upon substitution of aij from Equation (III-8) becomes:

n n
-2 k aij ekqkiXp j

i,j=l k=l

n
-2 1

i,j=l

ai.j ii

aij

n a..p..
2 ij=1 3 13
i,j=l aij

d n

T lekqkiXpjk=l

d2

dt 2

n

kilekqkixppj

(III-9)

(III-10)

z *-
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Thus, these terms will cancel with terms 2, 6, and 8 of Equation (III-7).

The remaining terms may be eliminated in a similar manner. Since, by

assumption, Bij and 6ij are greater than or equal 0, it is necessary only

to show that the first term of Equation (III-10) is negative definite in

order to prove that the response error is asymptotically stable.

It is known [10] that if the matrix Am is a stable matrix, there

exists a unique symmetric positive-definite matrix Q, which satisfies the

equation

T
A Q + QA = -C (III-11)
m m

where C is any symmetric positive-definite matrix. Thus, for any posi-

tive-definite C, V is a positive-definite quadratic function of the re-

ponse error and V is a negative-definite quadratic function of the response

error. Therefore, from Theorem II-3, the error is asymptotically stable

and the plant output will track the model output.

.a .b
The adaption parameters rates, Kij and Kij may be determined from

the relationships

m p m a a
aij = aij -aij =aij- ci j (t) Kij(t)

m p m b b

bij = bij ij ij cij(t) - Kij(t)
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Taking the time derivative of aij and bij and invoking the assumption

.a .b a ba(
that cij(t) and cij(t) are negligible as compared to Kia(t) and i(t),

respectively, the adaptive parameter rates are given by the expression:

a
Kj (t) = -aij

ij i

(111-12)

Integrating Equation 12, the adaption parameters are:

Kij = ij 

t

+ i d
ij dt

b 
Kij = Yij f

t

+ °ij d

[lekkixpj.] dO + aij klekqkixpj

[ Eekkixpj] ·+ Kij(to )

[kilekqkiuj] do + 
6
ij

ekqkiuj + Kij (to)Lk=l

E ekqkiuj

(111-14)

Equations (III-13) and (III-14) then give the general relationships for

the adaptive plant parameters.

(111-13)

.b
K ij(t) = -b (t)
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C. Application of Design Technique

In order to illustrate the application of the design technique, a

model of the National Aeronautics and Space Administration's Space Shuttle

vehicle is used. The design technique is applied first to a model with

linear characteristics and then to a model with nonlinear characteris-

tics. A linear simulation study was necessary since by using modulation

techniques, virtually linear characteristics in the Space Shuttle vehi-

cle may be obtained [15]. Simulation studies were also made in order to

determine the effect on the adaptation caused by wind gust disturbances

on the system. The dynamic equations used for the Space Shuttle vehicle

is assumed to have one bending mode in addition to the rotational mode.

In transfer function notation, the dynamic equations for the plant and

model may be represented as:

r (s) s

U(s) s2 + .2s + 4

c (s) 1
p -

U(s) s

rn (s) _ s

U(s) s
2
+ 2s + 4

=M(s) 1 (III-15)

U(s) s2 + 1.414s + 1
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In state equation form, the plant equations may be represented as:

x= x
lp 2p

X2p = -4.xlp - .2x2p + u

X3p - X4p + u

(III-16)
:4p 

where xlp = n, x2p = n, x3p = O + p, and X4p = *. The matrices Ap(t)

and B(t), from Equation (III-1) are

0 1 0 0

-4. -.2 0 0

A = 0 and
P 0 0 0 1

0 0 0 0

B [0 1 1 1]
T

For simulation purposes, it is necessary to assume specific values for

the elements of the Ap and Bp matrices. The design technique does not,

however, require the value of these elements for its implementation.

The rotational mode consists only of an inertial load and the bending

mode has a damping ratio of .05 with an undamped natural frequency of

2. rad/sec. It is assumed that all states are available.
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The model response chosen for the adapted plant in state equation

form is:

Xlm = X2m

X2m = -4.Xlm -2.X 2 m + U

X3m = -X3m + .5 8 6 X4m + u

X4m = -X3m - .414X4m + u (111-17)

The matrices Am and Bm of Equation (III-3) are:

0

-4.

0

0

B = [Om

1

-2.

0

0

0

0

-1.

-1.

0

0

.586

-.414

and

1 1 1]T

For the bending mode characteristics, the model has a damping ratio of

.5 and an undamped natural frequency of 2. rad/sec. The rotational

mode model has a damping ratio of .707 and an undamped natural frequency

of 1 rad/sec. The parameters selected for adaption are the damping

ratio of the bending mode and the damping ratio and natural frequency

of the rotational mode.

Am =
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In Equation (III-11), a solution for the matrix Q may be obtained

with the selection of a positive-definite matrix C.

Selecting the C matrix as:

8. 0. 0. 0.

0. 2. 0. 0.

0. 0. 8. 1.656

0. 0. 1.656 .484

The Q matrix may be determined as:

6. 1. 0 0

1. 1. 0 0

0 0 3. 1.

o 0 1. 2.

The adaptive parameters, which from practical considerations are assumed

to be zero at time zero, from Equation (III-13) are:

a

K2 2 = a22 J(elxp2+e2 xp2)d
0

+ 82 2 (elxp2+e2Xp2) + P2 2 d(elxp2 +e2 xp2 ) (III-18)

a3 = (3 e3xp3
+ e4 xp 3 ) dr

0

+ 83 3 (3.e3 Xp3 +e4 xp3 ) + P3 3 dt(3.e3 xp3 +e4 xp3) ( -19)
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ta
K34 = a3 4 (3.e3Xp4+e4xp4)d'

d+ 3 4 (3.e3 xp4+e4xp4 ) + 34d(3.e3x 4+ex 4 ) (III-20)

a 
K43 = 4 3= 43 (e3 p3 +2.e4xp3 )d

0

+ 43(e3xp3+2.exp3) + 43d(e 3Xp3 +2.e p3 (III-21)

a

K4 4 = a 4 4 t(e 3 Xp4 +2.e 4 xp4)d

0

+ S4 4 (e3 xp4+2.e4 xp4) + P44d(e3Xp4+2.e4p4) (III-22)

These adaption equations were implemented in a digital computer program

utilizing the Continuous System Modeling Program (CSMP). For the linear

case, two system inputs were investigated, the first being a sine wave

and the second a step. Figure III-1 shows the bending response of the

unadapted plant, the adapted plant, and the model response for a sine

wave input. The gains a2 2 ' B22' and p2 2 are 10., 5., and 5., respec-

tively. Figure III-2 shows the bending response for the unadapted

plant, the adapted plant, and the model with a step input to the system.

The gains a
2 2 , B22, and P22 are the same as in the previous case. Figure

III-3 shows a plot of the response error for a sine wave input to the

system for 2 values of P2 2. Figure III-3 illustrates that the derivative

term of Equation (III-17) causes a significant reduction in the maximum
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value of the response error. This is particularly significant because

the smaller the response error the better the adaption is being accom-

plished which means that the plant is more accurately tracking the model.

Figures III-4 and III-5 show the rotational position and velocity

responses, respectively, of the unadapted plant, the adapted plant and

the model. For Figures III-4 and III-5, the input is a sine wave. For

these figures, the adaptive gains are a33 = a3 4 = a4 3 = a44 = 6., 833 =

834 = 8 = 8 = 3., and p3 3 = p34 p p 43p= 4 4 = .2. Figures III-6 and

III-7 show the unadapted plant response, the adapted plant response, and

the model rotational position and velocity responses for a step input to

the system. The adaptive gains are the same as in Figures III-4 and III-

5. As can be seen from these figures, the adaption is quite rapid and

the plant tracks the model very accurately for either of the inputs.

Figure III-8 shows the rotational position response error of the adapted

plant for two values of the coefficient of the derivative term in

Equations (III-18), (III-19), (III-20), and (III-21). As can be seen

from the figure, the use of the derivative term significantly reduces the

maximum value of the response error. The integral of the square of the

bending response error and the rotational position response error were

calculated using the values of P2 2
, P3 3, p3 4, p 4 3 , and p4 4 given above.

The results are given in Table 1. As can be seen from the table, using

the derivative term of Equations (III-17), (III-18), (III-19), (III-20),

and (III-21), also leads to a reduction in the integral of the square

of the response error.
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Table 1. Values of integral-square error for sine wave and step inputs.
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The adaptive design technique developed in this chapter is appli-

cable to plants with time-varying parameters. To illustrate this,

simulation studies were made with the plant parameter a2 2 varying linearly

from 0 to -.2 and with the plant parameter a34 varying linearly from 1.

to .6 in 5. seconds. Figures III-9 and III-10 show the bending mode

response of the unadapted plant, the adapted plant, and the model for a

sine and a step input, respectively. As indicated by the figures, the

adaption is rapid and the response error is very small. Figures III-11

and III-12 show the unadapted plant response, the adapted plant response,

and the model response of the rotational position and rotational velocity

for a sine wave input to the system and with the parameter a34 varying

as noted above. As can be seen in both Figures III-11 and III-12, the

response error is quite small and the adaption is rapid. Moreover, in

Figure III-12, the scale is such that in order to show the unadapted plant

response, the adapted plant and model response are virtually indistin-

guishable. Figure III-13 is thus included and shows the response error

for the rotational velocity as a function of time. The figure shows that

the adaption is rapid and that the plant tracks the model after a rela-

tively short time. Figures III-14 and III-15 show the unadapted plant

response, the adapted plant response, and the model response for the

time-varying system with a step input. As in the case of the sine wave

input to the system, the adaption is rapid and the plant tracks the

model in a satisfactory manner.

In general, a control system may be considered as having two inputs:

the first being a control or command input which may, in general, be
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changed in some desired manner and the second being a disturbance in-

put which reflects the presence of an internal or external effect on the

system which cannot be manipulated as desired. One common disturbance

for a system such as the Space Shuttle is wind gust.

One of the inherent capabilities of an adaptive control system is

the ability to "adapt" so as to be able to provide the desired response

characteristics regardless of disturbances, unknown parameters, etc.

A simulation study was performed in order to determine the effect due to

wind gusts on the Space Shuttle vehicle compensated by adaptive control.

The wind gusts were simulated by a step input at 3. seconds with a

magnitude of 50% of the maximum control force available. Figures III-16

and III-17 show the bending mode response of the unadapted plant, the

adapted plant, and the model. The responses are shown for a wind gust

in the positive direction in Figure III-16 and in the negative direction

in Figure III-17. As can be seen from the figures, the adaption is very

good and the plant closely tracks the model even with large disturbances.

Figures III-18 and III-19 show the rotational position responses for the

unadapted plant, the adapted plant, and the model for a positive wind

gust and a negative wind gust, respectively. Figures III-20 and III-21

show the rotational velocity responses for the unadapted plant, the

adapted plant, and the model for a positive wind gust and a negative wind

gust, respectively. Again, the adaption is seen to be very satisfactory

and the adapted plant is very adequately compensating for the distur-

bances. Figure III-22 shows a plot of the rotational position response

error for no disturbance, a positive wind gust and a negative wind gust.
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The response error becomes small with the disturbances acting on the

system as it does without them. Thus, the response error is quite

small which means that the adaptive system is adequately compensating

for the disturbance effects and is tracking the model.

A simulation study for the Space Shuttle vehicle was conducted with

the thrust characteristics represented by a contactor mechanism with a

dead-zone. The design technique developed in Section B of this chapter

is applicable to this class of non-linear systems where the nonlinear

and linear elements may be grouped as in Figure III-23.

The simulation was made using CSMP with the unadapted plant and

model having the same dynamic characteristics as described above for the

linear case. Figure III-24 shows the rotational position response ver-

sus time for the unadapted plant, the adapted plant, and the model with

a step command to the system. As can be seen from the figure, the

unadapted plant response is grossly different from the adapted response.

The model and adapted plant rotational position responses are virtually

equal. The rotational position response error is shown in Figure III-

25 and can be seen to be quite small. Figure III-26 shows the phase-

plant plot for the unadapted plant, the adapted plant, and the model.

Figure III-26 shows that without adaptation, the system response is

oscillatory whereas the adapted plant responds in a very satisfactory

manner to the command input.

Figure III-27 shows the rotational position response for the un-

adapted plant, the adapted plant, and the model with an initial con-

dition on the plant. The adapted plant is seen to have virtually the
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Figure III-23. Block diagram of non-linear system representation.
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same characteristics as the model whereas the unadapted plant response

is oscillatory. Figure III-28 shows the rotational position response

error as a function of time. This shows that the plant is tracking

the model very closely. Figure III-29 is a phase-plant plot for the

adapted plant, the unadapted plant, and the model. As can be seen from

the figure, the adapted system has good damping whereas the unadapted

plant is highly oscillatory.
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IV. FREQUENCY-DOMAIN MODEL REFERENCE ADAPTIVE
CONTROL SYSTEM DESIGN

This chapter presents the results of the present research in the

area of frequency-domain design of model-reference adaptive control

systems. In some adaptive control system applications, it may be more

desirable, from an implementation standpoint, to provide adaptation

by some means other than the technique presented in Chapter III. The

model-reference adaptive control system design technique presented in

this chapter provides adaptation by means of pre-filters and feedback

filters. This design technique is for systems represented by a linear,

time-invariant plant as in [6]. Plant adaptation is accomplished by

having feedback filters and pre-filters with filter gains which are

determined by the application of Liapunov's direct method to the system

error equations. As a result of the application of Liapunov's direct

method, the response error (model output minus plant output) is asymp-

totically stable. The filters are designed so that the denominator of

each filter transfer function is the same as the denominator of the

model transfer function. This enables the basic filter networks to be

utilized for various missions provided that the system model is valid

for the different missions. The design technique is applied, as was the

design method presented in Chapter III, to the Space Shuttle vehicle with

linear characteristics and to the Space Shuttle vehicle with non-linear

characteristics. The effect of wind gust disturbances on the vehicle

88
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was also investigated as was the case of time-varying parameters. Sim-

ulation results of the Space Shuttle vehicle show that the adaption is

quite rapid and that the response error of the adapted system is greatly

reduced as compared to the response error of the unadapted system.

A. Problem Formulation

The plant is assumed to be a linear time-invariant system which

may be represented in the frequency-domain as:

b c + bc-1
cpS + b(c-l)p +...+ blpS + bop

n n-l
s + a(nl)pS

n-2
+ a(n-2)pS +...+ alps + a0p

where c < n - 1. The coefficients a0p,..., an_lp and bop,..., bcp are

assumed to be constant, unknown parameters and the polynomial i b si
i-O ip

is assumed to have no zeros in the right-half plane. The model transfer

function is assumed to be represented by:

n-l n-2

b (n-l)ms + b(n-2)mS
+...+ blms + b0mlm Om

n n-1
s + a(n-l)mS

n-2

+ a(n-2)mS
+...+ a s + a

The coefficients aom,..., a(n-l)m and bom,..., b(nl)m are constants

Gp(s) = (IV-l)

Gm(s) = (IV-2)
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and the model transfer function is assumed to be a minimum-phase net-

work. The response error in the frequency-domain is defined by the

equation:

E(s) A Xm(s) - X (s) (IV-3)

Thus, the object of the frequency-domain adaptive control research was

to develope a design procedure for determining pre-filter and feed-

back filters with characteristics directly related to the desired

model in such a manner that the response error would be asymptotically

stable.

B. Development of Pre-Filters and Feedback Filters for General Fourth
Order System

In order to fully illustrate the design procedure the technique

will be developed in detail for a general fourth order system and then

extended to a general n order system. The basic system block dia-

gram is shown in Figure IV-1. The additional input,-U, which is the

sum of the outputs of the pre-filters and feedback filters, is to be

designed so that the plant will track the model. The general fourth

order plant is assumed to be represented in the frequency-domain by:

3 2
b 3pS + b2ps + blps + bop

Gp (s) = (IV-4)

4 3 2
s +a3p +a s +a s+ a3p 2p lp Op



IV-1. Basic system block diagram for frequency-domain technique.
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The model is also assumed to be represented in the frequency domain

by the relationship:

3 2

b3ms + b2mS + blmS + b0m

G ('s)= (IV-5)

4 3 2
s + a3 s + a2s + alms + a0m

Using Equations (IV-3), (IV-4), and (IV-5), the following expression

for the response error may be obtained.

4 3 2
E(s)(s + a

3
ms + a

2
ms + alms + a0m)

3 2
(a3p - a3m)s X (s) + (a2p - a2m)s Xp(s) + (alp - alm)sp(s)

3 2
+ (a 0p- a0m)X (s) + (b - b -b )s R(s)Op Om p 3m 3p 2m 2p

+ (blm - blp)sR(s) + (b0m- bOp)R(s) - b3ps 3U(s)

- b2ps2 U(s) - blpsU(s) - bOpU(s) (IV-6)

This step is more easily illustrated in the time-domain. Equation (IV-4)

may be represented in differential equation form as:
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4 3 2
d xp d xp d xp dxp

+ a3p _ + a2p + alp + aopX
p

=

dt dt dt dt

d R d U 3 d R d U dR dU
bgp -+ . + + - + b - + -

dt dt [t dt 2 dt dt

+ bOpIR + U] (IV-7)

Likewise, in the time-domain, Equation (IV-5) may be represented as:

d4 x d3 x d 2 x dxm m m m

+ a3m + a2m + am + a0mxm

dt4 dt3 dt2 dt

3 2
dR dR dR

b3m + b2m + b - + b R (IV-8)3m 3 2m m Om
dt3 dt2 dt

By subtracting Equation (IV-7) from (IV-8), adding and subtracting iden-

tical terms, the following expression may be obtained:

d xm d xpd xm d

dt 4 dt 4 dt 3 dt3
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d x x 2 dx d[ am p
+ a2m - - + alm -

d 2 dt2 dt dt 

+ aOm(xm - Xp) = (a

dxp
+ (al - al ) +

dt

d3xp

a3p- a3m)_
dt3

(aOp - aO )x

2
d2xp

+ (a 2p 2m) 
2

dt

d3R

+ (b3m - b )-

dt

d2R

+(b2m - b ) +
dt

d3 U

3p -
dt

d 2 U

b2p
dt 2

-b
dR

)-+ (bm - b )R
dt

dU

- blp- - b0pU

dt

Thus, taking the Laplace transform of the preceding expression gives

Equation (IV-6).

Let us now make the following definitions:

a 1 = (a3p - a 3 m), a2 = (a2p

4 (a0p a0m) a5 = (b3m

- a 2 m), a3 = (a lp- alm)

- b3p ) 6 = (b2m- b2p)

7 = (blm - bp) a8 =(b0m- b0 p)' 9 = b3p

(IV-9)
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10 = -b2p, all = -blp, a1 2 = -bOp, and

A = s4 + a3mS3 + a
2m
S 2 + alms + a0m (IV-10)

Multiplying Equation (IV-6) by s, using the definitions of Equation

(IV-10) and rearranging terms, the following expresssion may be obtained.

sE(s) = x (als 4 + a2s3 + a3s 2 + a4s)
A

R(s) 4 3 2
+ -(a 5 s + a 6 s + a7 s + a 8 s)

A

-a9U(s) +- a [(a3ma
9 + a10)s + (a2ma

9
+ all)S2

+ (alma9 + a12)s + aOm] (IV-11)

The terms involving aom, alm, a2m, a3m, and U(s) result from dividing

the expression s4 by A. The time-domain expression for the time deri-

vative of the error may be found by taking the inverse Laplace Transform

of Equation (IV-11). Doing so gives the expression:

, ~ Ie(t) = s4Xp(s) {s 3Xp(s) + s2Xp(s)
et) ={ A } + a

2 } +
a

3} 1
+ AA A Aa

+ I 4 jIsXp(s) + I s4 R(s) - s3 R(s) 7 I s2 R(s)~}+ a4 { } + a { } + a { }+ aA 
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-I

+ s IsR(s)}

3 2
-9

t

) 1 {(a3 mS3 + a2ms + alms + aom )

A

+ 1 + {s sU(s) + 12 {sU(s)}

Let us now select u(t) as:

12
u(t) = I KiZi

i=l

where Ki, i = 1,..., 12

direct method and Zi, i

1 s 4 Xp(s)

1-' s2xp(s)

Z = f { A 

Z7 = d,{s 2 R(s)}
A

are filter gains to be determined via Liapunov's

= 1,..., 12 are given by the expression:

- 3

Z 4 = {sR(s)A

-I
z8 = % {sR(s)

A

(IV-12)

(IV-13)
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Z9 = {(a3ms 3 + a2mS2 + alms + aOm) U(s)
A

-I

Z10= AJ { }

12 s (s)}
Z12 A

l = s2U

(IV-14)

Thus, Equation (IV-12) may be expressed as

e(t) - (al - Kla
9
)Z

1
+ (a2 - K2 a9 )Z2 + (a3 -K 3a9 )Z3

+ (a4 - K4 a
9
)Z4 + (a5 - K5 a9 )Z5 + (a6 - K6 a9)Z6

+ (a7 - K7 a9 )Z7 + (a 8 - K8a9 )Z8 + (a9 - Kgag)Zg

+ (a 1 0 - K1 0 a9 )Z10 + (a 1 1 - K1 1 9 )Z1l + (a 1 2 - K12'9)Z12 (IV-15)

Equation (IV-15) may also be expressed by the summation:

12

e(t) = I (ai - Kji 9 )Zi
i=l

(IV-16)

Thus, Equation (IV-13) gives the expression for the auxiliary input to

the system which is a function of the pre-filter and feedback filter

networks defined in Equation (IV-14). Equation (IV-16) gives the

expression for the time derivative of the error as a function of the

pre-filters and feedback filters and their gains. It is necessary,
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then, using Liapunov's direct method to obtain an expression for the

filter gains Ki, i - 1,..., 12 in such a manner that the response error

is asymptotically stable.

Let us select a Liapunov function of the following form:

12 2
V = e2 + [(ai - Kia9 ) + 6i(eZi)] (IV-17)

i=l Bi

where Bi and 6i are constants greater than zero. Thus, the V function

of Equation (IV-17) is positive definite. The time derivative of

Equation (IV-17) is given by the relationship:

12
V = 2ee + 2 1 [(ai - Kiag) + 6i(eZi)]

i=1 6 i

[-Kiia + 6idt(eZi)] (IV-18)

Let us now assign Ki the value

Ki = B~i(eZi) + 6i dt(eZi) (IV-19)
a9 a9 dt

Substitution of Equation (IV-17) and (IV-19) into Equation (IV-18)

gives:

12

V = 2e I (ai - Kia9)Zi
i=l

12
+ 2il i[(ai - Kia9) + 6 i(eZi)][-Bi(eZi)] (IV-20)
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which may be written as:

12 2

= -e Zi6i (IV-21)
i=l

Application of Theorem II-4 thus shows that with the selection of Ki,

i = 1,..., 12 as given by Equation (IV-19), that the response error is

asymptotically stable.

Integrating Equation (IV-19) gives the expression for the filter

gains which are:

t

Ki f= i(eZi)d7 + Pi(eZi) + Ki(to) i = 1,..., 12 (IV-22)

tO

~
i

g~6.
where a. = - and p. =

1 1
c"9 Oe9

Equations (IV-14) and (IV-19) then give the necessary relationships

for the pre-filters, feedback filters and their gains so that the re-

sponse error is asymptotically stable.

As may be seen from inspection of Equation (IV-15), the filters

may be grouped into 3 filter networks as given by Equation (IV-23). For

mathematical convenience, frequency-domain notation will be used although

the gains are time-varying quantities.

Filter for Xp(s)

Kls4 + K2 s3 + K3 s2 + K4 s

A
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Filter for R(s)

K5s4 + K6s3 + K7s + K8s

Filter for U(s)

(K9 a3m + KL0)s3 + (Kga2m + Kll)s2 + (Kgalm K1 2 )s + K9a0m

A (IV-23)

C. Extension to General nt h Order System

The basic system block diagram is as discussed in Section B and is

shown in Figure IV-1. The plant and the model are given by Equations

(IV-1) and (IV-2), respectively.

Applying the methods of Section B, the expressions for Zi, i

1,..., 3n are given by:

z q s Xp(s)

Zn = I {sp s}

Z I -{sx p(s)Zn = ~A

- n-l

, Z2 = l{ I}x ,...

{snR(s)
' Zn+l ~ A '

Z -sn-lR(s)
+ = ...' z AsR(s )
n+2 a } 2n 
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(a (n n-)m + a( n2) +... + as + a)U(s)
; (n-l)m (n-2)m * lm Om-

2n+l = } ,
A

-I

Zn = I {SU(s) (IV-24)

n n-i n-2where A = sn + a ( +a(n2)ms +...+ alms + a0m

The filter gains Ki, i = 1,..., 3n are given by the expression:

Ki = i / (eZi)drT + Pi(eZi) + Ki(to) (IV-25)

tO

Bi 6 iwhere a
i
= and P

i
= 

a2n+l a2n+l

As for the system investigated in Section B, the pre-filters and feed-

back filters and their gains given in Equations (IV-24) and (IV-25),

respectively, may be grouped into 3 filter networks as shown in Equation

(IV-26).

Filter for X (s)

n n-l 2
KlS + K2 s +...+ Knls + Kns

Filter for R(s)

Kn+ls n + Kn+2s nl 1 +...+ K2nlS + K2ns

A
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Filter for U(s)

~(K an-i n-2
(K2n+la(n-l)m+ K2 n+2 ) + (K2n+l a(n-2 )m +K 2 n+3)S

+...+ (K2n+lalm + K3n)S + K2n+laOm

(IV-26)

The generalized expression for the error equation is given by:

3n

e(t) = I (ai - Kia2n+l)Zi (IV-27)
i=l

In steady-state, the gains Ki, i = 1,..., 3n become constant and are

given by:

a.
limit Ki = (IV-28)
t -* co 0'2n+l

D. Application of Design Technique

A model of the National Aeronautics and Space Administration's

Space Shuttle vehicle is used, as in Chapter III, in order to illustrate

the application of the frequency-domain design technique. The design

technique is applied to the same basic system configurations as was

investigated in Chapter III. The Space Shuttle vehicle is investigated

assuming both linear and non-linear characteristics. Simulation studies
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were made in order to determine the effect of wind gust disturbances

on the adaption scheme. In addition, it is shown by simulation results

that the adaption scheme may be applied to a time-varying system al-

though the frequency-domain technique itself is not developed for the

time-varying case.

The dynamics used for the Space Shuttle vehicle in this study are

as given below in the frequency-domain. The bending mode plant and model

transfer functions, GEp(s) and GEm(s), respectively, are given by:

XEp(s) s

G p(s) == (IV-29)
R(s) + UE(s) s + .2s + 4

and

XEm (s) s

G (s)= - (IV-30)
Em R(s) s2 + 2s + 4

The transfer functions for the rotational mode plant and model, denoted

by Gpp(s) and Gpm(s), respectively, are given by:

Xpp(s) s + 1

Gpp(s) = __ (IV-31)
R(s) + Up(s) s2P~~s
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Xpm (s)

G (s) = =
PM R(s)

s+1

(IV-32)

s2 + 1.414s + 1

For the bending mode, the filters ZiE, i = 1,..., 6, from Equation

(IV-24) are:

Z1E = { SXE
Z1E I {sA E(S)

3E t { AE(S)

=' SXE (S)

IZ2E = - IAE (S)

Z4E = 

-I

Z5E = I (2s + 4)U(s)
aE(S)

(sR(s) }

AE(S)

Z6E = S{U(s)}Z6E = IA AE(S)

where AE(s) = s2 + 2s + 4.

The gains KiE, i = 1,..., 6, assumed to be zero at time zero, are given

by the expression:

KiE = GiE

t

J (eEZiE)dr + PiE(eEZiE)
0

(IV-33)

where eE = XEm - XEp

The filters for XEp(s), R(s), and UE(s), from Equation (IV-26) are:

Filters for XEp(s)

3(S-
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K1E2 + K2Es

AE(s)

Filter for R(s)

2
K3ES + K4ES

AE(s)

Filter for UE(s)

(2K5E + K6E)S + 4K5E

A (S)
E

For the rotational mode, the filters Zip, i = 1,..., 6, from Equation

(IV-24) are:

(IV-34)

Zlp= f { 2Xpp(s)} Z
a p(s)

-' 2

z3p = I Is 
R (s )

} , z4p
Ap(s)

Z5 p = i-I {(1.414s+1)U(s) }
5~~~~~p A(s)

sXpp (s)

= {(S) }

p (s)

-=

9 Z = - S { (s)
6P Ap (S)

2
where A (s) = s + 1.414s + 1

(IV-35)
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The gains Kip i = 1,..., 6, assumed to be zero at time zero, are

given by the expression:

t
Kip = Oip f(epZip)dlr + Pip(epZip)

0

(IV-36)

where ep = xpm - xpp

The filters for Xpp(s), R(s), and Up(s), from Equation (IV-26)

are:

Filter for Xpp(s)

2
Klps + K2ps

Ap(s)

Filter for R(s)

2
K3 pS + K4pS

Ap (s)

Filter for Up(s)

(1.414K5p + K6 p)s + K5p V-
(IV-37)

Ap (s)
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The system with pre-filters and feedback filters was simulated as

in Chapter III with CSMP. Two system inputs were investigated for the

linear case, the first being a sine wave input and the second a step

input. Figure IV-2 shows the bending response of the unadapted plant,

the adapted plant, and the model for a sine input to the system. The

gains OiE and PiE, i = 1,..., 6 are 20. and 30., respectively. Figure

IV-3 shows the bending response of the unadapted plant, the adapted

plant, and the model response with a step input to the system. The

gains aiE and PiE are as in the previous figure. As can be seen from

these figures, the adaptation is rapid and the plant tracks the model

very closely.

Figures IV-4 and IV-5 show the rotational position and velocity

response of the unadapted plant, the adapted plant, and the model for

a sine wave input to the system. For these figures, the gains aip and

Pi , i = 1,..., 6 of Equation (IV-36) are 20. and 30., respectively.

Figures IV-6 and IV-7 show the same responses except with the system

having a step input. As can be seen from the figures, the response

error is very small for both a sine wave input and a step input. The

adapted plant and model responses are virtually indistinguishable for

the rotational position and velocity for the system with either a sine

wave input or a step input.

The design technique developed in this chapter was not developed

for a system with time-varying parameters. However, a simulation study

was made in order to determine if the design technique would provide
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adaptation for a system with some time-varying parameters. For the

bending mode, the plant was assumed to be represented by:

G (s) s (IV-38)

sEp + CES + 4

where C Evaries linearly from O. to .2 in 5. seconds. For the rota-

tional mode, the plant was assumed to be represented by

G (s) = s+l (IV-39)

pp s2 + Cp

where Cp varies linearly from -.2 to 0. in 5. seconds. For mathe-

matical convenience, frequency-domain notation is used. Figures IV-8

and IV-9 show the bending mode response for the unadapted plant, the

adapted plant, and the model for a sine wave input and a step input.

As can be seen from the figures, the adaption is not seriously affected

and the plant tracks the model very closely. Figures IV-10 and IV-11

show the rotational position and velocity, respectively, of the un-

adapted plant, the adapted plant, and the model with a sine wave input

to the system. Figures IV-12 and IV-13 show the same responses with a

step input to the system. The time variations for Figures IV-7 through

IV-13 were as noted above. Again, it is seen that the time-varying

parameters do not seriously effect the adaptation.



4.

3.'

2.

1.l /
o 0 I # I I00I.

8 1. 2\ 3. 4. 6. 7. 8. 10.

4) -1 . * 5\ / /Time, Seconds

g -2. * /

Z \ ' < / / M~- Model
·¢ 3 -3.- 'F - ---- Adapted Plant

---- Unadapted Plant

~-4. \ /
-5.

-6.

IV-8. Bending mode responses of model, adapted plant, and unadapted plant,
sine wave input, time-varying parameters, frequency-domain technique.



5.
Model

4 . --- Adapted Plant
2 -- Unadapted Plant

3. .

step input, time-varying parameters, frequency-domain technique.

1\-2. Ti. Secon /ds

-3.

-4.

-5.

IV-9. Bending mode responses of model, adapted plant, and unadapted plant,
step input, time-varying parameters, frequency-domain technique.



8.

!
6.

4.

0

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
o -2.

-8.
0

sine wave input, time-varying parameters, frequency-domain te8.

IV-10. Rotational position responses of model, adapted plant, and unadapted plant,
sine wave input, time-varying parameters, frequency-domain technique.



o 20.

x N, - Model

16. Adapted Plant

W / - Unadapted Plant

12. 
/

i 1 . 24. 5. 7. 8. 9.

e7 - Time, Seconds

-8.

IV-11. Rotational velocity responses of model, adapted plant, and unadapted plant,

sine wave input, time-varying parameters, frequency-domain technique.sine~wave input, time-varying parameters, frequency-domain technique.



11. 1I
10.

C
rd 8. ./

- Model

a,( 6. ---- Adapted Plant

'H6 ---- Unadapted Plant--Unstable

° 5. .~o~/

1. Time, Seconds

O. ~ I e I i I t Time, Seconds

0. i I I

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

IV-12. Rotational position responses of model, adapted plant, and unadapted
plant, step input, time-varying parameters, frequency-domain technique.



I

~~xo ~~~ t4. I,~ / ~' -Model
s 4. .4... __-- Adapted Plant

s 3 /g \ ---- Unadapted Plant--Unstable

3.

2.

0

X0. I I I I I I i _ I ,

o 1. 2. 3. 4. 5. 8. 9. 10.

- -1. . Time, Seconds

-2.

IV-13. Rotational velocity responses of model, adapted plant, and unadapted plant,
step input, time-varying parameters, frequency-domain technique.



121

As was discussed in Section C of Chapter III, one of the inherent

capabilities of a "good" adaptive control system is the ability to

"adapt" so as to be able to provide the desired response characteristics

regardless of disturbances, unknown parameters, etc. With the adapta-

tion of the Space Shuttle being provided via the frequency-domain design

technique, a simulation study was performed in order to determine the

effects on the vehicle due to wind gusts. As in Chapter III, the wind

gusts were simulated by a step input at 3. seconds with a magnitude of

50% of the maximum control force available. Figures IV-14 and IV-15

show the bending mode response of the unadapted plant, the adapted plant,

and the model. The responses are shown for a wind gust in the positive

direction in Figure IV-14 and in the negative direction in Figure IV-

15. The figures show that the adaptation provided by the frequency-

domain method compensates successfully for the large disturbances and

the plant tracks the model very closely.

Figures IV-16 and IV-17 show the rotational position responses for

the unadapted plant, the adapted plant, and the model for a wind gust

in the positive direction and a wind gust in the negative direction,

respectively. Figures IV-18 and IV-19 show the rotational velocity

responses for the unadapted plant, the adapted plant, and the model for

a wind gust in the positive direction and in the negative direction,

respectively. As in the case of the bending mode, Figures IV-14 through

IV-19 show that the adaptation provided by the frequency-domain design

technique compensates very adequately for the wind gust disturbances.
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Thus, even for large wind gust disturbances, the system adapts so that

the plant tracks the model very accurately.

The frequency-domain design technique was investigated, as was the

time-domain technique of Chapter III, for the Space Shuttle vehicle with

the thrust characteristics represented by a contactor mechanism with a

dead-zone. Figure IV-20 shows the rotational position response versus

time for the unadapted plant, the adapted plant, and the model with a

step input command to the system. As can be seen from the figure, the

unadapted plant response is substantially different from the adapted

response whereas the adapted response and the model response are vir-

tually indistinguishable. The actual rotational position response error

is shown in Figure IV-21 and is seen to be quite small. Figure IV-22

shows a phase-plane plot for the unadapted plant and the adapted plant.

As was shown in Chapter III, the unadapted response is oscillatory. How-

ever, the adapted plant responds in a very satisfactory manner as the

plant closely tracks the model. Figure IV-23 shows the rotational posi-

tion response for the unadapted plant, the adapted plant, and the model

with an initial condition on the plant. As with the previous case, the

adapted plant and model responses are virtually the same whereas the

unadapted plant response is grossly different. Figure IV-24 shows the

actual rotational position error as a function of time. This shows

that the response error is very small which implies that the plant is

tracking the model very accurately. Figure IV-25 shows a phase-plane
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plot for the adapted plant and the unadapted plant. As was shown previ-

ously, the unadapted system is highly oscillatory. However, the adapted

system, using the frequency-domain design technique, is well damped and

tracks the model with little error.



V. AN APPLICATION OF SENSITIVITY COEFFICIENTS TO THE DESIGN
OF MODEL-PREFERENCE ADAPTIVE CONTROL SYSTEMS

The purpose of this chapter is to discuss an application of sensi-

tivity coefficients [16], [17], and [18]. Sensitivity coefficients are

shown to be applicable to the design of model-reference adaptive control

systems. In particular, they are applied to the adaption of the Space

Shuttle vehicle which was investigated in Chapters III and IV.

In this application of sensitivity coefficients, it is assumed that

the plant parameters while being unknown, are constant. The model re-

sponse, as in all model-reference adaptive control schemes, is considered

to be the desired response. The object of the adaption process is to

use the sensitivity coefficients in a manner so as to change some of the

plant parameters, which in general will have non-ideal values, so as to

cause the plant to track the model.

A. Definition of Sensitivity Coefficient

Let us now define the sensitivity coefficient as in [19]. Let the

output of a system be denoted by x(t, P1, P2) where pi and P2 are nominal

parameter values. If the parameter pi varies from the nominal value by

some value Ap1, the output is then given by x(t, pi + AP1, P
2
). The

sensitivity coefficient is defined by:

limit x(t, P1 + AP1' P
2
) - x(t, P1 , P2)

AP1- 0 (V-1)
AP1
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which is the partial derivative of x(t, Pl, P2) with respect to P1

evaluated at the nominal parameter values. Thus, the sensitivity coef-

ficient for Pk is the partial derivative of the system output with

respect to a system parameter Pk and will be denoted by DXk.

B. Use of Sensitivity Coefficients in Model-Reference Adaptive Control
System Design

One model-reference adaptive control method in which sensitivity

coefficients may be utilized is a technique developed by Osburn [8].

Osburn defines the optimum performance as that which results when the

system parameters are adjusted to produce a minimum of some specified

Performance Index. The performance index selected was:

P. I. = t f(e)dt (V-2)

fo

The interval Ito, tl] is of sufficient length to include most of the

dynamic response of the system for an input at time to and f(e) is an

even function of the error. The function selected for investigation

by Osburn was

f(e) = 1/2 e2 (V-3)

It was then concluded that each adjustable parameter, Pk, should be

changed continuously at a rate proportional to the negative of the

partial derivative of f(e) with respect to Pk. In equation form, this

is given by:
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Pk = -Skf'(e) ae (V-4)

where S
k

is a constant. For the f(e) used, which is given in Equation

(V-3), the adaptive parameter rate may be written as:

k -Se De (V-5)
k aPk

ae
Now consider the term -. For the model-reference adaptive control

aPk
system, the response error is given by:

e = Xm - Xp (V-6)

Taking the partial derivative of Equation (V-6) with respect to the

parameter Pk gives

e XP (V-7)

apk apk

ax
The term is equal to zero because the model does not contain any

8Pk
adaptive parameters. Examination of Equation (V-7) shows that the term

- is the negative of the previously defined sensitivity coefficient.
3Pk

Thus, the rate for the adaptive parameter Pk may be rewritten in terms

of the response error and the sensitivity coefficient as:

axp
Pk = Ske a (V-8)
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Integrating Equation (V-8), the adaptive parameters are:

to

r ~~ax~~axatO

In general, however, it is not possible to determine a because
aPk

this requires a knowledge of the plant parameter values and this lack of

information is one of the primary motivations for using an adaptive sys-

tem. Thus, it is necessary to approach the problem in a different manner.

Hence, the following assumption is made [11]: If the response of the

plant approximates that of the model, then the sensitivities of the

model approximate the true sensitivities of the plant. With this

assumption, the model parameter values may then be used in order to

evaluate the sensitivity coefficients necessary for the implementation

of Equation (V-9).

Although Equation (V-9) provides a method for system adaptation, it

should be noted that there is no provision for insuring the stability of

the response error as was done in the design techniques of Chapters III

and IV.

C. Generation of Sensitivity Coefficients

The sensitivity coefficients necessary for implementation of the

adaptive scheme will be generated as in [19]. Consider the general case

of a system described in the frequency domain by
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C(s) N sm + b sm- +...+ bs + bo
= -= -i 1 0 (V-10)

R(s) D sm + ailsm - 1 +...+aals + ao

The partial derivative of C with respect to a parameter pj is

aN aD
ac R(D -- - N---)

PJ apJ (V-ll)

apj D2

By using Equation (V-10), Equation (V-ll) may be rewritten as:

ac R an C aD
(V-12)

3pj D 3pj D apj

A signal-flow graph of Equation (V-12) is shown in Figure V-1. Thus, if

the input to the system in Figure V-1 is R, then the sensitivity coef-

fient C is a summation of the signals present at the M , Z = 0,..., m-l
apj Z

nodes of the system model and the signals present at the S , -= 0,...,

m-l nodes of the sensitivity model in accordance with the equation:

ac rn- aa

.. O (M --t-- S apj (V-13)apj = ajPI =0 
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The - and - are evaluated at the nominal values of the parameter
aPj apj

set.

D. Application to Space Shuttle Vehicle

The design procedure defined by Equation (V-8) was applied to the

Space Shuttle vehicle. The model and plant are as described in Section

D of Chapter IV and which are repeated here for convenience. The bending

mode plant and model, GEp (S) and GEm (s), respectively, are:

XEp(s) = G (s) -

R(s)

XEm() = GEm(S) =

R(s)

s2 + (.2 + p )s + 4
2E

s

2
s + 1.414s +1

For the rotational mode, the plant and model transfer functions, denoted

by G (s) and G (s), respectively, are:
pp pm

x (s)
pm5 r G (s) =

R(s)

s+l

2
s + P 2 ps +Plp

and

(V-14)

(V-15)

(V-16)
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and

X (s) s + 1
pm =G (s) = (V-17)

pm 2
R(s) s + 1.414s + 1

Applying the methods of Section C, the sensitivity coefficient E may

aP2E
be generated as shown in Figure V-2 and the sensitivity coefficients

IXpp and IX may be generated as shown in Figure V-3.
ap p ap2

The method utilizing sensitivity coefficients was applied to t~he

Space Shuttle vehicle assuming first a sine wave input and then a step

input. Figures V-4 and V-5 show the bending mode responses for the

model, the adapted plant, and the unadapted plant for a sine wave input

and a step input, respectively. As can be seen from the figures,

adaption is occuring, but at a slow convergence rate. Figures V-6 and

V-7 show the rotational position and velocity responses for the model,

the adapted plant, and the unadapted plant for a sine wave input. The

figures show that adaption is occuring, but at a slow rate. Several

seconds are necessary before the adaption has a noticeable effect on

the system. Figures V-8 and V-9 show the rotational position and veloc-

ity responses for the model, the adapted plant, and the unadapted plant

for a step input to the system. Again, the figures show that the

adaption convergence is slow. The adapted system is much more oscil-

latory than the model, but the plant does track the model after a
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sufficient period of time. Figure V-10 shows plots of the rotational

position response error versus time for the Space Shuttle vehicle

adapted with the method utilizing sensitivity coefficients and with the

time-domain technique developed in Chapter III. Clearly, the response

error is significantly less with the time-domain technique.
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VI. CONCLUSIONS

In this report, the problems associated with the design of model-

reference adaptive control systems were considered and solutions to these

problems were advanced. Stability of the adapted system was a primary

consideration in the design techniques developed. Thus, Liapunov's direct

method formed an integral part of the development of both the time-

domain and frequency-domain design techniques.

The basic stability definitions, theorems regarding Liapunov

stability and their application as well as a justification for the use

of Liapunov's direct method in the design of model-reference adaptive

control systems are presented in Chapter II.

A time-domain model-reference adaptive control design technique is

presented in Chapter III. This represents a significant extension of

previous design techniques. With the design technique developed in

Chapter III, adaption to the system is a function of the response error

and the plant states as well as the derivative and integral of these

quantities. Results obtained from the application of this design tech-

nique to the Space Shuttle vehicle show that the response error is less,

the plant more favorably tracks the model and, in general, better system

adaptation is achieved than with previous methods. Results also show

that very successful adaptation is obtained even with large wind gusts.

Good adaptation is also achieved with non-linear system characteristics

as well as with linear system characteristics.
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A frequency-domain model-reference design technique is presented

in Chapter IV. Physically realizable feedback filters, pre-filters

and the filter gains are designed so as to provide system adaptation.

The approach to the problem was influenced by the fact that an adaptive

system in which the same basic filter networks could be utilized for a

number of missions was desired. As for the time-domain design method of

Chapter III, stability of the adapted system was incorporated in the

development of the design technique via Liapunov's method. Results

obtained from the application of this design technique to the Space

Shuttle vehicle showed that excellent system adaptation was obtained

and the plant, even with severe wind gusts, successfully tracks the

model. Non-linear as well as linear system characteristics were studied

and the results showed that system adaptation was excellent for either

case.

Sensitivity coefficients were shown, in Chapter V, to be applicable

to the design of model-reference adaptive control systems. Results

obtained from the application of a design technique utilizing sensitivity

coefficients to the Space Shuttle vehicle with linear characteristics

showed that system adaptation was achieved. However, the adaptation

is much slower and causes a much larger response error than either of

the design techniques developed in Chapters III and IV.

The use of multiple force points should be investigated. For

example, in addition to the on-off thrust characteristics of a reaction

jet control system, the use of control forces available from aerodynamic
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surfaces may be desirable. The inter-relationship of these various

forces on the adapted system should be investigated. The investigation

of optimal adaptive system convergence rates and their relationship with

the dead-zone boundaries of the adapted system should also be investi-

gated. Another item of much practical significance would be a study

to determine the range of variations of various system parameters such

as mass, moment of inertia, center of gravity, etc., that could be.

tolerated by the adaptive system without having to do additional detailed

pre-flight studies. A study to determine the technique that could be

most easily implemented on a digital computer is also recommended.
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